Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sens Actuators B Chem ; 369: 132306, 2022 Oct 15.
Article in English | MEDLINE | ID: covidwho-1915000

ABSTRACT

The continuing global spread of Coronavirus Disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection, has led to an unprecedented global health crisis. Effective and affordable methods are needed to diagnose SARS-CoV-2 infection. In this work, a ratiometric fluorescence probe, Si-Mn:ZnSe nanoparticles, was constructed through the electrostatic interaction between Si dots and Mn:ZnSe QDs, and the fluorescence of Mn:ZnSe QDs has a specifical response to H2O2. An immunocomplex was formed by the recognition of capture antibody/spike (S) protein/spike neutralizing antibody/biotinylated second antibody/streptavidin/biotinylated catalase (CAT). In the presence of S protein, CAT effectively catalyzed the decomposition of H2O2 in the system, and the fluorescence of Mn:ZnSe QDs was not specifically quenched. Based on this principle, a ratiometric immunoassay of SARS-CoV-2 S protein was established. The sensitivity of the proposed ELISA method was comparable to that of the commercial kit. In addition, this method can effectively distinguish the pseudo-SARS-CoV-2 virus and other pseudovirus. Therefore, this method provided a reliable and potential direction for diagnosing SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL